# Tibia lead, folate, MTHFR genotype, and birth weight.

Katarzyna Kordas<sup>1</sup>, Adrienne Ettinger<sup>1</sup>, Joel Schwartz<sup>1</sup>, Mara Tellez Rojo<sup>2</sup>, Mauricio Hernandez Avila<sup>2</sup>, Hector Lamadrid<sup>2</sup>, Howard Hu<sup>3</sup>, and Robert Wright<sup>1</sup>.

<sup>1</sup>Harvard School of Public Health, Boston, MA, USA; <sup>2</sup>National Institute of Public Health, Cuernavaca, Mexico; <sup>3</sup>University of Michigan School of Public Health, Ann Arbor, MI, USA).

# Maternal folate intake/status and birth weight

- Maternal folate intake or status are associated with fetal and birth outcomes—birth weight, intrauterine growth retardation.
- Folate status seems to explain a small portion of the variability in birth weight.

#### Folate-gene interactions

- Folate—is a substrate for methylenetetrahydrofolate reductase (MTHFR), which participates in one-carbon metabolism.
- Polymorphisms of the MTHFR gene (C → T substitution at nucleotide 677) are fairly common, depending on geographic region.
  - Frequency of homozygous individuals as high as 36% in Mexican populations
- Certain MTHFR genotypes produce enzymes with lower metabolic activity.

#### MTHFR, folate, and size at birth

- The effects of folate are particularly evident in women with certain polymorphisms in genes responsible for folate metabolism.
  - Maternal 677TT genotype paired with low RBC folate, was associated with lower birth weights.
  - But, maternal MTHFR variants (1298CC and 677TT) not associated with negative outcomes, even in women who had low (500 μg/day) second-trimester folate intakes.

#### Lead exposure and birth weight

- Lead exposure during fetal development has also been associated with lower birth weight and small for gestational age births in some studies.
- The magnitude of these effects has been modest and comparable to the effects of nutritional deficiencies.
  - In Mexico women, 7.3 g decrease in BW for every 1 µg/g increase in bone lead.
- No studies of metabolic links specifically between lead and folate, or MTHFR.

#### Objectives

Do maternal MTHFR polymorphisms modify the relationship between maternal folate intake and birth weight or between fetal lead exposure and birth weight?

### Design and methods

#### Study Overview

- Study period: January 1994 June 1995
- Mexico City—3 hospitals serving low-tomiddle income populations
- Women were approached when presenting to the hospital for delivery
  - Asked about willingness to participate in a randomized Ca supplementation trial 1 month after delivery

#### **Data Collection**

- Anthropometry, maternal and umbilical blood collection within 12 hours of delivery.
- Food intake determined with a semi-structured food frequency questionnaire (FFQ)
- Bone lead levels measured using a spot-source 109Cd KXRF instrument at 1 month postpartum.
- MTHFR genotyping on archived blood samples
  - SNPs at loci 594, 677, and 1298 were examined.

#### **Data Analysis**

- For *MTHFR* SNPs, assumed dominant effects.
- Birth weight was modeled as a function of maternal folate intake, tibia lead, and MTHFR SNP.
- Analyses stratified by genotype:
  - Folate intake & tibia lead were fit into models predicting birth weight.
- Models adjusted for variables known to influence birth weight: maternal age, height, total years of schooling, marital status, post-partum MUAC, gestational age, parity, and sex of the child.

### Results

### Sample characteristics

|                             | In Study    | Excluded    |
|-----------------------------|-------------|-------------|
|                             | (n=495)     | (n=112)     |
| Age (y)                     | 24.5 ± 5.1  | 24.7 ± 5.4  |
| Height (m)                  | 1.54 ± 0.05 | 1.52 ± 0.05 |
| Total schooling (y)         | 9.4 ± 3.2   | 8.7 ± 3.2   |
| Years living in Mexico City | 20.5 ± 8.3  | 20.7 ± 8.9  |
| Tibia lead (µg/g)           | 9.9 ± 10.1  | 10.4 ± 10.4 |
| % folate < 400 µg/d         | 35.3        | 36.0        |
| % Primiparous               | 43.6        | 40.3        |
| Gestational age (wk)        | 39.4 ± 1.2  | 39.2 ± 1.3  |
| Birthweight (g)             | 3166 ± 417  | 3003 ± 412  |
| Ever smoke (%)              | 43.4        | 46.6        |

#### MTHFR allele frequencies

594 C→T

|    | n   |
|----|-----|
| CC | 448 |
| СТ | 36  |
| TT | 1   |

Allele frequency

3.9%

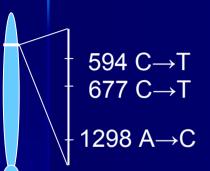
677 C→T

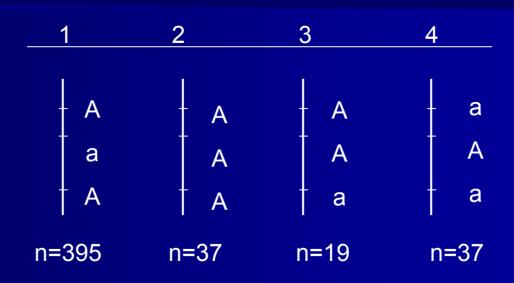
|    | n   |
|----|-----|
| CC | 68  |
| СТ | 242 |
| П  | 152 |

Allele frequency

59.1%

1298 A→C


|    | n   |
|----|-----|
| CC | 384 |
| СТ | 87  |
| TT | 8   |


Allele frequency

10.7%

All variants in Hardy-Weinberg equilibrium.

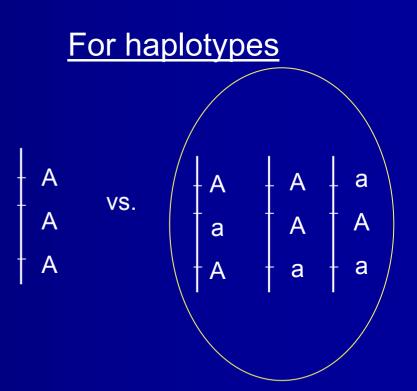
### MTHFR haplotypes



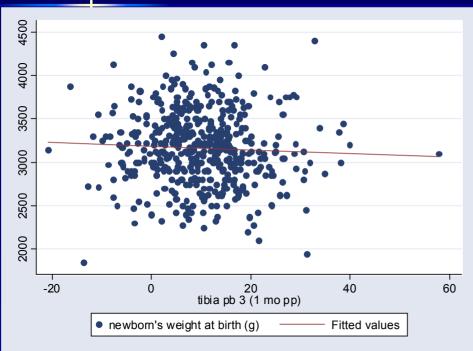


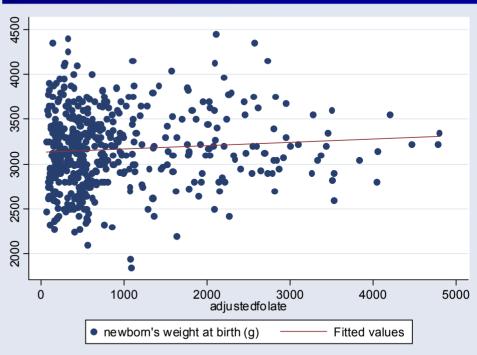
#### Dominant effect analysis

#### For SNPs


594 C→T

|           | n   |
|-----------|-----|
| CC        | 448 |
| <b>CT</b> | 36  |
| TT        | 1   |


Wild type


VS.

Carrier



# Birth weight vs. Tibia Lead and Folate Intake





#### Tibia lead, folate intake and BW

| Predictor            | N                | Adjusted <sup>2</sup> β ± SE |
|----------------------|------------------|------------------------------|
| Folate intake (µg/d) | 495              | 0.04 ± 0.02**                |
| Tibia lead (µg/g)    | 494 <sup>1</sup> | -4.1 ± 1.8**                 |

<sup>\*\*</sup>p<0.05; ¹Tibia lead >70μg/g removed; ²Adjusted for maternal age, total years of schooling, child sex, parity, marital status, gestational age, maternal height, postpartum arm circumference, smoking.

#### MTHFR genotypes and BW

| Predictor              | N   | Adjusted <sup>1</sup> $\beta \pm SE$ |
|------------------------|-----|--------------------------------------|
| 594 carrier            | 485 | -42.1 ± 65.6                         |
| 677 carrier            | 562 | 60.2 ± 50.1                          |
| 1298 carrier           | 479 | -34.9 ± 44.0                         |
| Haplotype <sup>2</sup> | 487 | 104.9 ± 65.4                         |

<sup>&</sup>lt;sup>1</sup>Adjusted for maternal age, total years of schooling, child sex, parity, marital status, gestational age, maternal height, postpartum arm circumference, smoking. <sup>2</sup>Both haplotypes considered in this analysis.

#### Tibia, folate, and BW—by SNPs

Adjusted  $\beta \pm SE$ 

|     |                   | C594T           | C677T             | A1298C          |
|-----|-------------------|-----------------|-------------------|-----------------|
|     | Wild type         |                 |                   |                 |
| N   |                   | 447             | 68                | 383             |
| Fo  | late (µg/d)       | $0.03 \pm 0.02$ | $0.04 \pm 0.05$   | $0.02 \pm 0.02$ |
| Lea | ad (µg/g)         | -5.6 ± 1.9***   | $-13.3 \pm 6.0**$ | -6.6 ± 2.1***   |
|     | Carriers Carriers |                 |                   |                 |
| N   |                   | 37              | 393               | 95              |
| Fo  | late (µg/d)       | $0.03 \pm 0.09$ | 0.04 ± 0.02*      | 0.09 ± 0.05*    |
| Lea | ad (µg/g)         | 21.2 ± 7.8**    | -4.4 ± 2.0*       | $3.5 \pm 3.8$   |

<sup>\*\*\*</sup>p<0.01, \*\*p<0.05, \*p<0.1; Adjusted for maternal age, total years of schooling, child sex, parity, marital status, gestational age, maternal height, postpartum arm circumference, smoking.

## Tibia, folate, and BW—by haplotype<sup>1</sup>

|               | Wild Type                            | Any Variants            |
|---------------|--------------------------------------|-------------------------|
|               | n=37                                 | n=450                   |
|               | Adjusted <sup>1</sup> $\beta \pm SE$ | Adjusted $\beta \pm SE$ |
| Folate (µg/d) | $-0.01 \pm 0.07$                     | $0.05 \pm 0.02**$       |
| Lead (µg/g)   | $-17.4 \pm 10.4$                     | $-4.0 \pm 1.8**$        |

<sup>\*\*</sup>p<0.05, \*p<0.1; ¹Adjusted for maternal age, total years of schooling, child sex, parity, marital status, gestational age, maternal height, postpartum arm circumference, smoking. ²Both haplotypes considered in this analysis.

#### Discussion

- Maternal lead exposure negatively associated with birth weight in Mexican newborns.
  - Birth weight was within "normal" range, with 4.4% of infants born LBW.
- Increased folate intake was positively associated with birth weight.
- MTHFR polymorphisms were not independently related to birth weight in this population.

#### Discussion

- Carrier status for any of the SNPs seemed protective against the effects of prenatal lead exposure on birth weight.
  - Women with lower MTHFR activity are not as affected as women with normal activity.
- Lead and other metals are related to changes in DNA methylation status.