DEVELOPMENTAL FACTORS IN ADULT OBESITY: DIET, ENVIRONMENTAL CHEMICALS AND IMPORTANCE OF ANIMAL MODELS

Frederick vom Saal Division of Biological Sciences University of Missouri-Columbia, USA

Bisphenol A

Funded by research grants from the National Institutes of Health (NIH)

IUGRMACROSOMIA(Premature)(Maternal Type II diabetes)(Reduced placental blood flow)

Proposed factors influencing induction of IUGR

- A Babies that are overweight at birth are at risk for adult obesity and metabolic disease.
- Some babies with intrauterine growth restriction (IUGR) are at risk for a rapid period of postnatal weight gain, adult obesity and metabolic disease.

EXPERIMENTAL APPROACHES FOR ANIMAL RESEARCH ON THE FETAL BASIS OF METABOLIC SYNDROME

Treatment of Pregnant Females

- Caloric restriction
- Protein restriction
- High fat diet
- Exercise

* Knockout mice (e.g. 11ß-HSD)

Environmental chemicals - PLASTIC

Uterine Position		Placent Blood Flow	RADIOLABELED MICROSPHERES
	O 1	31.5	
	O 2	331	
	O 3	206	
	M-2	208	3
	M-1	9.3	2
	M0	188	
	M1	27.3	
	M2	29.7	
	C 3	31.3	
	C 2	435	3 3 3 1
	C 1	366	C V Kirkpatrick et al Unpublished

MALE MOUSE BODY WEIGHT AT BIRTH

PERCENT INCREASE IN BODY WEIGHT DURING THE 7 DAYS AFTER WEANING IN MALE MICE

PERCENT INCREASE IN BODY WEIGHT DURING THE 7 DAYS AFTER WEANING IN FEMALE MICE

Birth Weight Percentile

GLUCOSE TOLERANCE IN MALE MICE

Coe et al. unpublished

COULTER COUNTER ANALYSIS OF FAT CELL DIAMETER IN MALE MICE

★ indicates difference between High and Low birth wt groups (P<0.05)

ADULT EPIDIDYMIDAL ADIPOCYTE GENE EXPRESSION: COMPARISON OF MALES CATEGORIZED WITH IUGR AND MACROSOMIA AT BIRTH

ADULT EPIDIDYMIDAL ADIPOCYTE GENE EXPRESSION: COMPARISON OF MALES CATEGORIZED WITH IUGR AND MACROSOMIA AT BIRTH

IUGR and Macrosomia Result in Differences in Adult Obesity

Hundreds of Genes in Epididymidal Adipocytes Differ in Activity

Affymetrix Mouse Genome 430 Array

EXPERIMENTAL DESIGN

Randomly assign adult CD-1 mice to be fed different mouse feeds

- Purina 5008: Pregnancy and lactation chow
 Purina 5001: Post-weaning chow
 soy based rodent feeds
 high levels of phytoestrogens: genistein and daidzein
- 2. Purina 5K96C
 - casein based feed
 - undetectable phytoestrogens (MCF-7 cells)

Examine offspring at different ages

SERUM ESTRADIOL

EFFECT OF FEED ON BODY WEIGHT IN FEMALE MICE

SERUM LEPTIN IN ADULT MICE

ESTROGENIC ACTIVITY IN DIFFERENT LOTS OF CASEIN-BASED PURINA 5K96C FEEDS MCF-7 CELL BIOASSAY

2-MONTH OLD CD-1 FEMALE MICE

USES OF BISPHENOL A IN PRODUCTS Production Capacity > 6.5 Billion Pounds / Year

Polycarbonate Bottles

The premier bottle.
27. scycle code on the bottom is your guarantee of our lity!
Glass-like, non-porous material
NO Plastic Leaching
NO Dioxin Leaching
Durable
No Heat or Cold distortion
Monual Water Bottle Pump
Fits most 2, 3 or 5 gal. bottles
Dispenses water easily with just a light touch

Call Toll-free: 800,592.8

www.newwaveenviro.com

fallon Ro

BISPHENOL A LEACHES FROM NEW POLYCARBONATE BABY BOTTLES

Taylor, vom Saal, Welshons and Rottinghaus (unpublished)

NATURAL AND MANMADE ESTROGENS

POLYCARBONATE PLASTIC & RESIN Bisphenol A

INTRAUTERINE POSITION INFLUENCES SERUM ESTRADIOL AND TESTOSTERONE IN MALE MOUSE FETUSES

PRENATAL BISPHENOL A EXPOSURE INCREASES BODY WEIGHT AT WEANING IN MICE WITH ELEVATED FETAL ESTROGEN LEVELS

EMBRYONIC EXPOSURE TO BISPHENOL A INCREASES POSTNATAL GROWTH RATE IN MICE

BISPHENOL A STIMULATES INSULIN SECRETION IN PANCREATIC & CELLS IN MICE

All Manmade Chemicals and Bisphenol A: Production Parallels the Global Obesity Epidemic

BISPHENOL A								
(as of December 2007)								
EVIDENCE FOR BIAS DUE TO SOURCE OF								
FUNDING IN RELATION TO REPORTED								
OUTCOME IN RESEARCH WITH ANIMALS								
SOURCE OF <u>STUDY OUTCOM</u>								
FUNDING		ARM	NO HARM					
Government		3 (92%)	14 (8%)	167				
Chemical Corporations		0 (0%)	13 (100%)	13				
	15	3	23	180				
vom Saal and Hughes, 2005 Environ. Health Perspect.		Also > 180 studies of moleculear mechanisms						

BIASED OUTCOME DUE TO SOURCE OF FUNDING IN LOW-DOSE BISPHENOL A RESEARCH (as of December 2005)

STUDIES THAT USED THE ESTROGEN-INSENSITIVE CHARLES RIVER SPRAGUE-DAWLEY (CD-SD) RAT

SOURCE	<u>REPORTED STUDY OUTCOME</u>				
OF FUNDING	HARM	NO HARM	TOTAL		
Government	0 (0%)	7 (100%)	7		
Chemical Corporations	0 (0%)	3 (100%)	3		
	0 (0%)	10 (100%)	10		
vom Saal and Hughes, 200 Environ. Health Perspect.)5				

DOCUMENT PROVIDED TO THE CALIFORNIA ASSEMBLY

NRepoted low-dose effects have not been replicated in repeat studies conducted in independent laboratories. The vast majority of available data shows no low dose effect whatsoever.Ó

Bisphenol A Safety Overview American Chemistry Council Document for California Assembly December 2005

Environmental Science and Technology February 22, 2006

THE WEINBERG PROPOSAL Paul D. Thacker

A scientific consulting firm says that it aids companies in trouble, but critics say that it manufactures uncertainty and undermines science.

"We will harness, focus and involve the scientific and intellectual capital of our company with one goal in mind — creating the outcome our client desires."

Letter from the FDA to the California Assembly, April, 2005

The FDA sees no reason to ban bisphenol A.

The FDA approved bisphenol A for use in food and beverage containers in 1963. The standard was that bisphenol A was Generally Regarded As Safe (GRAS), since it had been in use for a few years and there was no evidence of harm.

George Pauli, Ph.D. Associate Director for Science and Policy Office of Food Additive Safety Center for Food Safety and Applied Nutrition PUBLISHED STUDIES SINCE 1997 REPORTING LOW-DOSES EFFECTS OF BISPHENOL A IN MICE AND RATS <u>DURING DEVELOPMENT</u>

- 17=Altered brain structure & chemistry 21=Altered behavior
- 5=Increased prostate size and cancer
 9=Lowered sperm production
- 6=Altered adult hormone levels
- 7=Abnormal mammary glands
 3=Early puberty in females
- 7=Increased subsequent body weight
- 2=Altered immune system

SHOULD BISPHENOL A (BPA) BE BANNED IN BABY PRODUCTS AND FOOD AND BEVERAGE CONTAINERS?

Hundreds of published scientific studies show: 1) High exposure is occurring: fetuses - adults. 2) Developing fetuses and babies are more sensitive to BPA than adults. 3) BPA is an endocrine disruptor that causes a wide range of abnormalities in animals. 4) Alternative plastics that are much more stable and safer than BPA are available.

STUDENTS AND COLLABORATORS

STUDENTS

- **Relation Angle**
- <u>λ Benjamin Coe</u>
- **λ James Kirkpatrick**
- λ Maren Bell
- λ Davide Ponzi

COLLEAGUES

λ Wade Welshon
 λ Barry Timms
 λ Paola Palanza
 λ Stefano Parmigiani
 λ Huidong Shi
 λ Steve Yang

RESEARCH ASSOCIATES

 λ Jiude Mao λ Julia Taylor